The RNA-binding protein Secisbp2 differentially modulates UGA codon reassignment and RNA decay

نویسندگان

  • Noelia Fradejas-Villar
  • Sandra Seeher
  • Christine B. Anderson
  • Michael Doengi
  • Bradley A. Carlson
  • Dolph L. Hatfield
  • Ulrich Schweizer
  • Michael T. Howard
چکیده

Dual-assignment of codons as termination and elongation codons is used to expand the genetic code. In mammals, UGA can be reassigned to selenocysteine during translation of selenoproteins by a mechanism involving a 3΄ untranslated region (UTR) selenocysteine insertion sequence (SECIS) and the SECIS-binding protein Secisbp2. Here, we present data from ribosome profiling, RNA-Seq and mRNA half-life measurements that support distinct roles for Secisbp2 in UGA-redefinition and mRNA stability. Conditional deletions of the Secisbp2 and Trsp (tRNASec) genes in mouse liver were compared to determine if the effects of Secisbp2 loss on selenoprotein synthesis could be attributed entirely to the inability to incorporate Sec. As expected, tRNASec depletion resulted in loss of ribosome density downstream of all UGA-Sec codons. In contrast, the absence of Secisbp2 resulted in variable effects on ribosome density downstream of UGA-Sec codons that demonstrate gene-specific differences in Sec incorporation. For several selenoproteins in which loss of Secisbp2 resulted in greatly diminished mRNA levels, translational activity and Sec incorporation efficiency were shown to be unaffected on the remaining RNA. Collectively, these results demonstrate that Secisbp2 is not strictly required for Sec incorporation and has a distinct role in stabilizing mRNAs that can be separated from its effects on UGA-redefinition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2.

The cotranslational incorporation of the unusual amino acid selenocysteine (Sec) into both prokaryotic and eukaryotic proteins requires the recoding of a UGA stop codon as one specific for Sec. The recognition of UGA as Sec in mammalian selenoproteins requires a Sec insertion sequence (SECIS) element in the 3' untranslated region as well as the SECIS binding protein SBP2. Here we report a detai...

متن کامل

A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs.

In eukaryotes, the decoding of the UGA codon as selenocysteine (Sec) requires a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA. We purified a SECIS binding protein, SBP2, and obtained a cDNA clone that encodes this activity. SBP2 is a novel protein containing a putative RNA binding domain found in ribosomal proteins and a yeast suppressor of translation termina...

متن کامل

Functional characterization of alternatively spliced human SECISBP2 transcript variants

Synthesis of selenoproteins depends on decoding of the UGA stop codon as the amino acid selenocysteine (Sec). This process requires the presence of a Sec insertion sequence element (SECIS) in the 3'-untranslated region of selenoprotein mRNAs and its interaction with the SECIS binding protein 2 (SBP2). In humans, mutations in the SBP2-encoding gene Sec insertion sequence binding protein 2 (SECIS...

متن کامل

A short motif in Drosophila SECIS Binding Protein 2 provides differential binding affinity to SECIS RNA hairpins

Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3'UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In ...

متن کامل

Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2

Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion. This requires a stem-loop structure in the 3' untranslated region of eukaryotic mRNAs known as the Selenocysteine Insertion Seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017